
App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

A1 Supporting Internal Presets
On occasion, you may want to control the GUI from within the plugin. Usually you want
to pick up information from the GUI and use it to manipulate the GUI, by “invisibly”
controlling knobs or buttons or linking controls so that they move together. There are a
couple of ways to do this, one being the use of sub-controllers and custom-views. These
are C++ objects you design with VSTGUI4 and can allow you to make amazingly cool
controls and control clusters. If you are trying to intelligently link controls together, you
should learn to use the VSTGUI4 sub-controller paradigm. It is the proper way to handle
that problem, but you can also get away with it using the method.

If you want to implement internal presets, then this is a viable option that is relatively
painless. In this app note, I will add internal presets to the StereoDelayer project and
show you how to send a message to the GUI that will update all the controls at once. In
addition I will use the same mechanism to turn on and off a LED that shows the dirty
status of the GUI.

Figure A1.1: (top) a preset drop-list added to the ASPiK StereoDelayer project and
(bottom) when the user moves any control, a “dirty GUI” LED lights up next to the
“Preset” text, when the user selects a fresh preset, the LED turns off

A1.1 Thread-Safe GUI Messaging
The ability to send thread-safe custom messages to the GUI has been part of ASPiK from
the very beginning because it had been a request from users of the original (sunsetted v6)
RackAFX software for a decade. The method here uses a thread-safe mechanism to
deliver a message to the host plugin shell. That plugin shell then follows the thread-safe
mechanisms built into the various APIs to issue messages that ultimately make the GUI
controls move. This allows you to remotely control a GUI element (please, no hate mail
from UX developers).

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

There are 2 things to remember:

• when you remotely set the position of another control, you send a message to the
host that consists of a structure with information about which control you want to
manipulate and the control’s new value

• you let the host move the control, and then that information will but updated
along with the normal GUI update cycle; in other words, just issue the GUI
control command and don’t change your underlying GUI-linked variables or
parameters. These will change automatically on the next buffer process loop in
the normal manner, as if the user had moved the controls

You only need to modify one function that you will find in your plugincore.cpp file
called guiParameterChanged() – you use this function to get notified when the user has
manipulated a control, as well as sending a host command.

A1.2 Internal Presets
The most common use of this mechanism is for supporting internal presets that are
compiled into your plugin code. There are some things to consider.

1. When the user selects a preset from a list, you want the GUI controls to snap into
the new locations. You have two options, one is to issue the GUI update
command and let the normal buffer processing update cycle alter your parameters,
as discussed above. If there is some crazy reason that the underlying parameters
should also change at that instant – and I cannot think of one – then you can also
alter the parameters as well using the same mechanism as the plugin shell uses
when loading presets from a DAW.

2. This will circumvent the DAW preset loading system; although you see this in
many commercial plugins, it may be scorned upon as dangerous. This is because

Note: your PluginCore can NEVER communicate directly with the PluginGUI, and
your plugin core does not know, or need to know, if the GUI exists or not. The two
objects do NOT hold pointers to each other.

The messages you are sending are to the plugin shell (the outer AAX, AU, VST or
RAFX2 container object), which then updates the GUI according to its own thread-
safe mechanism.

Custom Views may be used for pumping data into a GUI control, e.g. to show a
waveform or FFT spectrum. These use a custom view interface and lock-free ring
buffers that allow asynchronous, thread-safe communication directly with the GUI
control, but they never communicate with the PluginGUI object itself. These are
documented in the ASPiK SDK and demonstrated with several sample projects.

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

the preset is also a GUI control that will be serialized with the DAW session or
DAW preset. For some DAWs that still do not support VST3 Presets, this is
the only option.

3. If the user selects a preset and the controls snap to their new locations, then all is

good. What happens if the user then moves one of the controls? You need a way
to alert the user that the controls they are looking at are NOT the same as the
preset that they are also looking at. Some DAWs place an * symbol next to the
preset name, or other relatively benign way of letting you know the preset is
“dirty.”

Figure A1 shows how item #3 works – you can see a small aqua LED next to the “Preset”
text that notifies the user when the GUI controls do not match the preset that is selected.

A1.3 Internal Preset GUI Control
First, you should consider making the default GUI control values that you set when you
created the controls (min/max/default) the very first present, named “default” or “factory
init” or some other string that makes sense for the user. When the user opens the plugin
for the very first time, the GUI will match the selection in the preset control. It will be
vital that the GUI controls and the preset selection are synchronized when the user sees
the GUI for the first time, and that they are also synchronized each time a preset is
loaded.

You first need to add a GUI control for the user to select the preset. So, add a new string
list parameter to your ASPiK project, or a new on/off switch to your RackAFX project.
You can name the linked variable anything you like, and you need to remember the
controlID, which is going to be based on your liked variable name. My control is setup as
follows, notice that default is the first string in the list.

Linked Variable: selectPreset
String List: default, boing, gogo, whack

A1.4 Preset Packaging
Next, you need to decide how to store the GUI control values for each preset:

1. Use the built-in PresetInfo structure and std::vector of these structures; see the
initPluginPresets function

2. Use a custom data structure that goes with one of my C++ objects in the
fxobjects.h file and described in my 2nd edition FX book; this is what I will use for
this example

3. Use your own custom data structure that holds the information you need.

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

The StereoDelayer uses a single AudioDelay object for its entire operation. This object
uses a custom data structure that holds all of the values of the controls on the GUI – it is
perfect to use as a preset structure here. I have chosen 3 presets, plus the default preset
for a total of four presets. The code is in the plugincore.h and .cpp files.

plugincore.h
At the top of the file, I have added some constants:

const uint32_t NUM_PRESETS = 4;
enum {DEFAULT, BOING, GOGO, WHACK}; // you need the default

In the class definition, I added the storage structures and a helper function to load the
presets:

// --- storage for NUM_PRESETS worth of audio delay params
AudioDelayParameters presetParams[NUM_PRESETS];

// --- helper function to load the preset
void loadPreset(uint32_t index);

plugincore.cpp
I setup the presets in the initialize function in plugincore.cpp. This function will only be
called once, whereas the reset function may be called whenever the sample rate changes.
You may also use the constructor for this initialization. The reason I prefer the initialize
function, is that it receives the path to the plugin DLL in the function argument and that
path might be required for some custom stuff you need to load as part of a preset. This
applies to synths that require folders of sample files, etc…

Notice how I setup the default preset first, using the current (default) parameter values,
then the others are set manually with various preset values.

bool PluginCore::initialize(PluginInfo& pluginInfo)
{

 // --- setup presets
 //
 // --- DEFAULT
 presetParams[DEFAULT].algorithm = convertIntToEnum(

delayType, delayAlgorithm);
 presetParams[DEFAULT].leftDelay_mSec = delayTime_mSec;
 presetParams[DEFAULT].feedback_Pct = delayFeedback_Pct;
 presetParams[DEFAULT].delayRatio_Pct = delayRatio_Pct;
 presetParams[DEFAULT].dryLevel_dB = dryLevel_dB;
 presetParams[DEFAULT].wetLevel_dB = wetLevel_dB;

 // --- short
 presetParams[BOING].algorithm = delayAlgorithm::kNormal;
 presetParams[BOING].leftDelay_mSec = 30.0;
 presetParams[BOING].feedback_Pct = 70.0;
 presetParams[BOING].delayRatio_Pct = 50.0;
 presetParams[BOING].dryLevel_dB = -3.0;
 presetParams[BOING].wetLevel_dB = -3.0;

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

 // --- long delay
 presetParams[GOGO].algorithm = delayAlgorithm::kPingPong;
 presetParams[GOGO].leftDelay_mSec = 1200.0;
 presetParams[GOGO].feedback_Pct = 60.0;
 presetParams[GOGO].delayRatio_Pct = 23.0;
 presetParams[GOGO].dryLevel_dB = -3.0;
 presetParams[GOGO].wetLevel_dB = -3.0;

 // --- massive FB
 presetParams[WHACK].algorithm = delayAlgorithm::kPingPong;
 presetParams[WHACK].leftDelay_mSec = 850.0;
 presetParams[WHACK].feedback_Pct = 97.0;
 presetParams[WHACK].delayRatio_Pct = 63.0;
 presetParams[WHACK].dryLevel_dB = -6.0;
 presetParams[WHACK].wetLevel_dB = -3.0;

 return true;
}

The loadPreset function does all the work and uses the GUIParameter structure that you
need to understand first.

A1.5 GUIParameter Structure
The structure for sending information back to the host is called GUIParameter and its
contents are self-explanatory: the controlID is the ID of the control you want to remotely
manipulate, and actualValue is the control’s value, as a double, encoded as above. There
is another option reserved for future use involving custom GUI data that you can safely
ignore.

struct GUIParameter
{
 uint32_t controlID = 0; ///< ID value
 double actualValue = 0.0; ///< actual value

 bool useCustomData = false; ///< custom data flag (reserved)

 // --- for custom drawing, or other custom data
 void* customData = nullptr; ///< custom data (reserved)
};

A1.6 Sending the Host Message
You send updates back to the Host using an interface that is already built into your
project called the pluginHostConnector – the conduit between the plugin and shell. Each
GUI control you want to alter requires its own GUIParameter struct however, you may
issue all of the control changes at once! The GUIParameter structures are sent to the host
via a std::vector and you may send as many or few as you like. You may also send them
in groups if that makes more sense for your application.

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

The pluginHostConnector will handle cleaning up the vector for you, so there is nothing
else to do but issue the command. For example, to send a GUI control update message to
a control with controlID::myControl and a new value of 123.45 you would setup the host
message structure like this. This code declares the info structure, and sets the message to
sendGUIUpdate, the only message currently supported.

HostMessageInfo hostMessageInfo;
hostMessageInfo.hostMessage = sendGUIUpdate;

Next, prepare a GUIParameter structure for the control with the new value you want to
set:

GUIParameter param;
param.controlID = controlID::myControl;
param.actualValue = 123.45;

Then, add this structure to the vector and add as more controls as you like – it is OK to
only have one control in the vector.

hostMessageInfo.guiUpdateData.guiParameters.push_back(param0);

Finally, use the interface to call the function – that is it, you are done.

// --- send message to host
pluginHostConnector->sendHostMessage(hostMessageInfo);

A1.7 The loadPreset Function
This function will be called when the user alters the preset control. You pass the index of
the preset and it sets up the GUIParameter structures according to the selection. The code
is fairly self-explanatory here and only includes the preset selection; we will come back
and add the code to turn the LED off, signifying a new preset load operation.
	
void PluginCore::loadPreset(uint32_t index)

// after validating the argument, you setup the structs

if (index >= NUM_PRESETS)
 return;

// --- grab the preset structure
AudioDelayParameters presetParam = presetParams[index];

// --- update the GUI
HostMessageInfo hostMessageInfo;
hostMessageInfo.hostMessage = sendGUIUpdate;

// --- setup a GUIParameter structure
GUIParameter guiParam[6];

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

// --- algorithm
guiParam[0].controlID = controlID::delayType;
guiParam[0].actualValue = enumToInt(presetParam.algorithm);
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[0]);

// --- delay time
guiParam[1].controlID = controlID::delayTime_mSec;
guiParam[1].actualValue = presetParam.leftDelay_mSec;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[1]);

// --- delay FB
guiParam[2].controlID = controlID::delayFeedback_Pct;
guiParam[2].actualValue = presetParam.feedback_Pct;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[2]);

// --- delay ratio
guiParam[3].controlID = controlID::delayRatio_Pct;
guiParam[3].actualValue = presetParam.delayRatio_Pct;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[3]);

// --- dryLevel_dB
guiParam[4].controlID = controlID::dryLevel_dB;
guiParam[4].actualValue = presetParam.dryLevel_dB;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[4]);

// --- delay wetLevel_dB
guiParam[5].controlID = controlID::wetLevel_dB;
guiParam[5].actualValue = presetParam.wetLevel_dB;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[5]);

// --- send message to host
pluginHostConnector->sendHostMessage(hostMessageInfo);

That’s it – this code will update the GUI controls, which will then be transferred into
your plugin bound variables in the normal manner. If, for some reason you want to force
the parameters to match, circumventing the system then you just call the internal function
setPIParamValue.

setPIParamValue(controlID::delayTime_mSec, delayTime_mSec);
setPIParamValue(controlID::delayFeedback_Pct, delayFeedback_Pct);
etc…

A1.8 guiParameterChanged
The plugin core object contains a function that is called anytime a user moves or touches
a control. It is NOT designed for you to change anything regarding the internal state of
the parameters – you can really screw things up badly if you misuse this function. The
function is called each time any control is moved and you are given the controlID and the
value of the control. Changing this value variable won’t do anything – it is implemented
with pass-by-value, but you may examine it and make decisions based on the control’s
new value. The first thing I do is check to see if the preset parameter has changed, and if
so I call the loadPreset function.

bool PluginCore::guiParameterChanged(int32_t controlID,

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

 double actualValue)
{
 switch (controlID)
 {
 case controlID::selectPreset:
 {
 // --- load a new preset
 loadPreset(uint32_t(actualValue));

 return true; // handled
 }

A1.9 Status LED Code
That does everything you need and technically you would be finished, but we need to
take care of the status LED as well. The status LED is implemented with a tiny custom
control I coded into the customcontrols.h file. It is an on-off button with the mouse
functions overridden and disabled. It is a one-way switch control that displays the LED
using its on or off state. The reason I did not use a VU meter object has to do with how
those objects get updated and animated during the idle function that is called every
50mSec to animate the meters, and also the controls when they are being automated. The
meter will not respond exactly as we want, and in some DAWs you would need audio
flowing just to see the updates. You can read more about creating and using custom
controls in the ASPiK documentation so I won’t bore you with it here. The status LED is
added to the ASPiK core like any other control.

A1.10 Custom Control: CLEDControl
You will find the code for this object in customobjects.h and it is ridiculously simple – an
on-off button with the mouse disabled making it a write-only kind of control. The
constructor just calls the base class and nothing else.

class CLEDControl : public COnOffButton
{
public:
 CLEDControl(const CRect& size,

IControlListener* listener = nullptr,
int32_t tag = -1, CBitmap* background = nullptr,
int32_t style = 0)

 : COnOffButton(size, listener, tag, background)
 {} // --- empty constructor, base class does all the work

 virtual CMouseEventResult onMouseDown(CPoint& where,

 const CButtonState&
 buttons) override

 {
 return kMouseEventHandled;
 }

 virtual CMouseEventResult onMouseUp(CPoint& where,

const CButtonState& buttons)
override

 {

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

 return kMouseEventHandled;
 }
};

I have also modified the PluginGUI object to include the new custom control (aka custom
view). The code is inside of the PluginGUI::createView function. I gave this control a
custom view string:

"CustomLED"

A1.11 LED Resources and Plugin Parameter
We are going to treat this “trick” on/off switch as an ordinary ASPiK parameter. This will
not only simplify coding, but will also allow the internal preset to be saved along with the
DAW session data as well as its presets. Create a string list parameter is ASPiK, or an
on/off switch in RackAFX. You only need the controlID of the parameter, which is the
same as the C++ variable name, or guiDirtyLED for my project.

The status LED uses an on-off stitched image found in the aqua_led_btn2.png file. You
need to add this to the ASPiK or RackAFX project in the normal fashion via the GUI
Designer. So, add the resource and then add the on/off switch to the GUI, selecting the
bitmap accordingly. Then, select the controlID that matches your ASPiK parameter.

aqua_led_btn2

Lastly, in the custom-view field or edit control, set the custom view name as:

CustomLED

Figure A1.2 shows how this appears in the RackAFX and ASPiK GUI Designers. You
need the controlID, the bitmap name, and the custom view name.

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

Figure A1.2: the on/off button attributes in RackAFX (left) and ASPiK (right) GUI
Designers.

A1.12 Status LED Code
You only need to alter two pieces of code to add the status LED implementation. First,
when the user loads a fresh preset, the LED needs to turn off to indicate a proper preset.
When any of the controls except the preset control is altered, the LED needs to turn on.

LED Off State
For the first part, I add the LED off code to the vector of parameter structures during the
parameter load operation in the loadPreset function, just before the host message call.

// --- delay wetLevel_dB
guiParam[5].controlID = controlID::wetLevel_dB;
guiParam[5].actualValue = presetParam.wetLevel_dB;
hostMessageInfo.guiUpdateData.guiParameters.push_back(guiParam[5]);

// --- turn OFF the dirty GUI LED
GUIParameter dirtyGUIParam;
dirtyGUIParam.controlID = controlID::guiDirtyLED;
dirtyGUIParam.actualValue = 0.0; // OFF
hostMessageInfo.guiUpdateData.guiParameters.push_back(dirtyGUIParam);

// --- send message to host
pluginHostConnector->sendHostMessage(hostMessageInfo);

App Note A1.0 Supporting Internal Presets Will Pirkle

 Copyright © Will Pirkle & Tritone Systems, Inc.

LED On State
Lastly, I altered the guiParameterChanged function with a compound case statement for
the rest of the GUI controls to turn on the LED if any control changes.

switch (controlID)
{
 case controlID::selectPreset:
 {

// --- load it
 loadPreset(uint32_t(actualValue));

 return true; // handled
 }

 case controlID::delayFeedback_Pct:
 case controlID::delayRatio_Pct:
 case controlID::delayTime_mSec:
 case controlID::delayType:
 case controlID::dryLevel_dB:
 case controlID::wetLevel_dB:
 {
 // --- setup the message struct
 HostMessageInfo hostMessageInfo;
 hostMessageInfo.hostMessage = sendGUIUpdate;

 // --- setup a GUIParameter structure
 GUIParameter dirtyGUIParam;

 // --- turn ON the LED
 dirtyGUIParam.controlID = controlID::guiDirtyLED;
 dirtyGUIParam.actualValue = 1.0; // ON

hostMessageInfo.guiUpdateData.
guiParameters.push_back(dirtyGUIParam);

 // --- send message to host
 pluginHostConnector->sendHostMessage(hostMessageInfo);

 return true;
 }
etc…

That’s it – you now have code for the preset loading and status LED to get you started.
Be sure to think about any other ramifications. All ASPiK parameters are automatable
and if someone automates the plugin here, all will be OK because of the way I avoided
altering the plugin parameters directly, and let the GUI control change do all of the work.

Will Pirkle

June 28, 2020 v1.0

