RAFX Technical Note 7 Updating pre v6.8 Projects
Copyright © 2017 Will Pirkle

Updating pre v6.8 Projects
Will Pirkle

This document explains how to update older RackAFX projects to take advantage of new features in the
VST plugin support code. This is for both RAFX.DLL as VST.DLL and the Make VST function.

NOTE: If you use the processAudioFrame() function, you don’t need to update anything for sam-
ple accurate MIDI - this paradigm does not require any extra code.

Sample Accurate MIDI and processVSTAudioBuffers()

RackAFX v6.8 added sample accurate MIDI to its VST projects (previously there was a 32-sample slop).
When using processAudioFrame() everything works as expected. However, when using processVSTAu-
dioBuffer(), some code was added to implement the sample accurate MIDI events. Newly created
projects have this code in place, however older projects need to be updated manually - fortunately it's
easy. This update only concerns the case of using processVSTAudioBuffer() with VST plugins.

To update, you need to add some code to handle the IMidiEventList interface, which is declared in plugin-
constants.h

Step 1: add a member variable and virtual function override for processRackAXMessage() to your .h file;
you can insert it after the declaration for userinterfaceChange()

<yourplugin.h>
/I 5. userlnterfaceChange() occurs when the user moves a control.
virtual bool __stdcall userinterfaceChange(int nControlindex);

/I --- declare an EventList interface
IMidiEventList* m_pMidiEventList = nullptr;

/I --- grab MIDI interface
virtual void __stdcall processRackAFXMessage(UINT uMessage, PROCESS_INFO&
processinfo);

Step 2: pick up the interface pointer in your newly declared message function; add this to your .cpp file:
<yourplugin.cpp>

void __stdcall <yourplugin>::processRackAFXMessage(UINT uMessage, PROCESS_INFO&
processinfo)

{

/I --- always call base class first
CPlugin::processRackAFXMessage(uMessage, processinfo);

/I --- for MIDI Event list handling (AU, VST, AAX with processVSTBuffer())
if (uMessage == midiEventList)

{
}

m_pMidiEventList = processinfo.plMidiEventList;

RAFX Technical Note 7 Updating pre v6.8 Projects
Copyright © 2017 Will Pirkle

Step 3: alter the code in processVSTAudioBuffer() to use the interface. Notice you need to declare a
separate counter variable for it, outside the while()loop:

bool __stdcall <yourplugin>::processVSTAudioBuffer(float** inBuffer, ...
{

/I declarations and other stuff

...

/I - the loop
unsigned int uSample = 0;
while (--inFramesToProcess >= 0)
{
/I --- fire midi events (AU, VST2, AAX buffer processing only)
if (m_pMidiEventList)
m_pMidiEventList->fireMidiEvent(uSample++);

--- rest of loop as normal

That's it - you'll now have sample accurate MIDI for all RackAFX projects (VST, AU, AAX, RAFX) while
using the processVSTAudioBuffer() function.

Sample Accurate Parameter Support (Automation in VST3 hosts)

RackAFX v6.8 added sample accurate parameter processing its VST projects, requiring a bit of extra
code on the plugin side. This is only for VST3 plugins as VST3 currently is the only API with this feature
built in. Newly created projects have this code in place, however older projects need to be updated
manually - fortunately it's easy. This document is only for updating older, pre v6.8 projects.

To update, you need to add a function called doVSTSampleAccurateParamUpdates() to your plugin, and
then call it at the top of your processing function.

Step 1: add a member function to your plugin's .h file, you can add it with the other functions at the top of
the file:

<yourplugin.h>
/I --- function to handle VST sample accurate parameter updates
void doVSTSampleAccurateParamUpdates();

RAFX Technical Note 7 Updating pre v6.8 Projects
Copyright © 2017 Will Pirkle

Step 2: implement the function in your .cpp file:
<yourplugin.cpp>
/* doVSTSampleAccurateParamUpdates

Short handler for VST3 sample accurate automation added in v6.8.0.5
There is nothing for you to modify here.

*/
void <yourplugin>::doVSTSampleAccurateParamUpdates()
{
/I --- for sample accurate parameter automation in VST3 plugins; ignore otherwise
if (!Im_ppControlTable) return; /// should NEVER happen
for (inti = 0; i < m_uControlListCount; i++)
{
if (m_ppControlTable[i] && m_ppControlTable[i]->pvAddiData)
{
double dValue = 0;
if ((IParamUpdateQueue *)m_ppControlTable[i]->
pvAddiData)->getNextValue(dValue))
{
setNormalizedParameter(m_ppControlTable[i], dValue, true);
}
}
}
}

Step 3: add the code to use the new object to the top of your processing frame
For processAudioFrame()

bool __stdcall <yourplugin>::processAudioFrame(float* pinputBuffer,...

{
I/ --- for VSTS3 plugins only
doVSTSampleAccurateParamUpdates();

--- rest of function as normal

For processVSTAudioBuffer()

bool __stdcall <yourplugin>::processVSTAudioBuffer(float** inBuffer, ...
{

/I declarations and other stuff

...

/I - the loop
unsigned int uSample = 0;
while (--inFramesToProcess >= 0)
{
/I --- fire midi events (AU, VST2, AAX buffer processing only;)
if (m_pMidiEventList)
m_pMidiEventList->fireMidiEvent(uSample++);

RAFX Technical Note 7 Updating pre v6.8 Projects
Copyright © 2017 Will Pirkle

/I --- sample accurate automation for VST3 only
doVSTSampleAccurateParamUpdates();

/I --- smooth parameters (if enabled) DO NOT REMOVE
smoothParameterValues(); // done on a per-sample-interval basis

--- rest of function as normal

That's it - you'll now have sample accurate parameter support (automation in a VST3 host) as long as the
host DAW supports this feature as well.

