
RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

!
Audio and GUI Thread Management in RackAFX, AU, VST3 and AAX!
Will Pirkle!!
This document explains the RackAFX v6.8(+) API for processing audio and handing GUI updates in a 
thread safe manner. It also shows how the same process works for AU, VST3 and AAX. Please note that 
the latter are somewhat simplified to avoid implementation details. !!
RackAFX!
In v6.8 and above, the paradigm for handling GUI control changes while processing audio changed to a 
thread safe method. The Focal Press book code does not change and the implementation details are 
done mainly at the base class level - as the plugin author, you will not even see the details unless you 
want to. The fundamental idea here is to make sure that the GUI and audio processing threads do not 
compete to access a plugin’s internal variables to alter their states which could create race conditions. We 
also need to make sure that inconsistent-data conditions do not exist, in which the GUI and processing 
threads have different values for linked variables (by linked, I am referring to the fact that GUI controls are 
linked to underlying variables). Figure 1 shows how this works in RackAFX. The numbers here follow the 
numbers in the figure. !!
First, the RackAFX document object which contains the processing thread owns a fixed array of !
GUI_PARAMETER structures. There is exactly one structure for each GUI control. The parameter array is 
protected via a CriticalSection - a Windows OS structure that is used for thread synchronization. Critical-
Sections have very low processing overhead and are preferred over mutexes for this application. Critical-
Sections also have a “try and enter, return if you can’t” function so that there is minimal impact on the au-
dio processing.!!
Next, the original audio processing paradigm has been broken into three phases: pre-processing, audio 
processing, and post-processing. Comparisons with the other APIs will show that this three-part method is 
essentially baked into each of the different paradigms. The result is that in v6.8 and above, your plugin is 
responsible for setting its underlying GUI-linked variables and calling userInterfaceChange() in the pre-
processing phase. In the post-processing phase, your plugin writes out any outbound parameter values, 
which are currently limited to meter values. This guarantees that your plugin’s GUI control variables can 
not be changed while you are processing your audio data. Extra security measures have been included 
so that you can not corrupt any data during the pre and post-processing phases. !!
Updating the GUI from within your plugin is done in a new thread safe manner, described in RAFX Tech-
nical Note 2. !

!!

! !

The code in the FX and Synth Books from Focal Press is still valid and does NOT change. This 
document describes details that are “behind the scenes” in the underlying CPlugIn base object 
and the RackAFX client. If you are following along in the books, you will not need to alter any-
thing in your projects. This document is mainly for people interested in how RackAFX (and the 
other APIs) handle GUI parameter changes. 



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

!
Figure 1: Audio/GUI processing in RackAFX!!
! !

Array of GUI 
Parameter Structs CriticalSection

Host: Make GUI 
Parameter Array COPY

processRackAFXMessage( ) 

GUI Parameter Array 
COPY

PlugIn: update dirty 
variables

userInterfaceChange()

message = preProcessData 

(1)

(2)

process audio buffers

do your cool plugin stuff

processAudioFrame( ) or buffers 

ask plugin for 
outbound parameter 

changes (meters)

processRackAFXMessage( ) 
message = postProcessData 

write out meter values 
into Parameter Array

Outbound GUI 
Parameter Array

return

return

Host: Update outbound 
GUI Parameters

return

Audio Process Loop

(4)

(5)

RackAFX Document
Object

(6)

idle() 
GetMeterParameters 
(meters) and update

(3)

(7)



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

!
From Figure 1, we can start at the top and discuss what happens after a GUI change is made, then how 
the signal processing function works. When either the RackAFX main UI or your custom GUI makes a 
change via a user input, the new parameter value is written into the corresponding GUI_PARAMETER 
structure for that control and a “dirty” flag is set in the structure. A CriticalSection is used for thread syn-
chronization for accessing this array. This is shown in (1) in the figure. The array of GUI_PARAMETER 
structures is created when your plugin is loaded into memory and is fixed in size - there is one GUI_PA-
RAMETER structure for each RackAFX ControlId value - i.e. one structure for each of your plugin’s GUI-
linked variables.!!
(2) At the start of each audio processing loop (the processing of one buffer of audio, in and out of the ap-
plication), the document makes a fast memory-copy of the current array into a second array which is also 
fixed in size and created when the plugin is loaded.!!
A new function has been added to the RackAFX API which will greatly extend the functionality for future 
versions. This function is called processRackAFXMessage() and is implemented on the CPlugIn base 
class - you do not need to alter this function, though you may override it if you wish. The messages cur-
rently used are preProcessData and postProcessData though more may be added in the future. !!
(3) In the pre-processing phase, any parameters that are marked dirty in the list are transferred into your 
plugin variables, and userInterfaceChange() is called for each one. This is done in your plugin object, dur-
ing the audio processing loop, but before any audio processing occurs. Notice that this is operating on a 
copy of the parameter array so the GUI is free to make other changes during the audio processing loop 
without interfering with your internal variables. This sequence guarantees that your plugin’s GUI-linked 
variables will not change during the audio processing operation and is common throughout the other 
APIs. It also guarantees that your plugin updates its own internal variables on the audio processing 
thread, rather than having them updated externally by the GUI thread.!!
(4) After the pre-process phase is complete, the usual audio processing function occurs, calling proces-
sAudioFrame() or either of the process-buffer functions depending on your personal choice. During this 
phase, you are free to access or even alter your own GUI-linked variables without worrying about the GUI 
thread accessing them as the GUI can only access the array of GUI_PARAMETER structures. !!
(5) After audio processing, the client will query you for any outbound parameter updates, specifically for 
metering variables. Again, this is all handled on the CPlugIn base class and you do not need to alter or 
deal with this code. The metering values are written into an array of GUI_PARAMETER structures that is 
passed by reference into the function. !!
(6) The updated meter variables are then applied to the document’s GUI_PARAMETER structures.!!
(7) Lastly, the meter values are updated during the GUI’s idle() processing loop, reading from the appro-
priate GUI_PARAMETER structure. !!
RackAFX v6.8 now implements an optional Automatic Parameter Smoothing operation to remove clicks, 
zipper noise, or other discontinuities from the GUI control variables as the user rapidly moves the controls 
around. This smoothing operation is also implemented in the derivative projects (Make VST, Make AU, 
Make AAX) as well as the RAFX-DLL-as-VST-DLL. This is detailed in RAFX Technical Note 3.!!
The following figures and descriptions show the similar processes that take place in AU, VST3 and AAX 
although there is some simplification here to avoid getting buried in the implementation details. 

! !



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

Audio Units!
The AU API uses a map of parameter objects called Global Parameters to handle GUI control functionally. 
There is one Global Parameter object for each of your plugin’s GUI controls (and linked variables). There 
is no thread synchronization object used as the authors did not want to incur the processing overhead of 
a mutex lock in MacOS. By this token, some might say that AU is not thread safe, however if you write 
your plugin according to AU guidelines, it will be thread safe by design. Atomic data accesses provide part 
of the data protection mechanism.!

!
Figure 2: Audio/GUI processing in AU!!

! !

map of Global 
Parameter Objects

processBufferLists() or Render()

Get Global Parameters

PlugIn: update dirty 
variables

userInterfaceChange()

(1)

process audio buffers

Audio Process Loop

AU Element
(PlugIn)

Atomic Write

write out meter values 
into Global Parameters

(2)

(3)

(4)

idle() 
GetGlobalParameters 
(meters) and update

(5)



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

(1) Starting at the top of Figure 2, when the user moves a GUI control, the Global Parameter changes are 
written using an atomic write operation, which only guarantees that the variable will not be half-baked af-
ter the GUI thread is halted. This is the mechanism that protects the write operation. !!
(2) At the very beginning of your process audio function, you access the Global Parameters and update 
your plugin’s variables. When using Make AU in RackAFX to create your ported project, only the variables 
that have changed will be updated, and have userInterfaceChange() called and as usual, all this code is 
written for you. !!
(3) Then, you process the audio buffer as usual.!!
(4) Afterward, you set the global parameters that correspond the meter parameters. Again, atomic writes 
are used to set these variables. !!
(5) Lastly, the meter values are updated by read-accesses to the Global Parameters during the idle() loop 
of the GUI thread.!!!!

! !



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

VST3!
The VST3 API also uses an intermediate parameter container for the GUI access parameters. When us-
ing VSTGUI4 and VST3 together, there is a tight parameter binding operation that occurs which connects 
parameters with the same index (tagged) variables, although the code becomes somewhat complex 
when stepping through it (you can do this for yourself and watch the operation if you wish). The parameter 
container is full of Parameter objects, one for each of your plugin’s GUI controls (and linked variables). !

Figure 3: Audio/GUI processing in VST3!!
! !

container of Parameter 
Objects WinOS: CriticalSection

Host: create parameter 
change Event List

Processor::process( ) 

Event List

PlugIn: update dirty 
variables

userInterfaceChange()

(1)

(2)

process audio buffers

Host: Update 
Parameter objects

return

Audio Process Loop

(6)

VST3 Processor Object
(PlugIn)

MacOS: Mutex Lock

write out meter values 
into Queue

(3)

(4)

(5)

Outbound Queue

idle() redraw meters 
bound to parameters

IParameterChanges

(7)



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

(1) Starting at the top of Figure 3, when the user moves a GUI control, the corresponding parameter ob-
ject is updated in the parameter container. For WindowsOS, a CriticalSection is used while a mutex is 
used in MacOS during the operation. The locking occurs during the doTriggerUpdates() phase of opera-
tion just after the parameter value has actually been changed.!!
(2) At the start of the processing loop, the host creates an event list of parameter changes for any para-
meters that were altered and marked dirty during the previous buffer cycle. The IParameterChanges inter-
face is used, though details of this are up to the authors of the VST3 host. This is shown with a dotted line 
because the implementation and thread safety details are handled by the host implementation.!!
(3) At the beginning of the Process() function, you iterate through the parameter change event list and 
alter your plugin’s underlying variables, calling userInterfaceChange() accordingly. This can be done on a 
buffer-wise basis (easy) or on a sample-by-sample basis (complex).  !!
(4) With your plugin variables set, you then process audio as normal.!!
(5) Meter variables are written into a special queue that is supplied as part of the argument to the 
Process() function.!!
(6) The Host then transfers the updated parameters into the parameter container, the details of which are 
left to the host authors (thus the dotted line), including thread safety and synchronization; then the out-
bound parameter queue is cleared. !!
(7) Lastly, the meter values are updated during the idle() loop of the GUI thread - owing to the parameter 
binding operation, there is no code to actually write here on the GUI side. !!!!!!!!!

! !



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

AAX!
The AAX version is the most complex and I’ve very much simplified operation for this discussion. In addi-
tion, there are multiple ways of writing an AAX plugin and here I am using the “monolithic object” ap-
proach. As with the other APIs, there is a set of parameter objects (here it is a std::set) and the GUI reads 
and writes variables from and to these parameters. There is one parameter object for each of your plug-
in’s GUI controls (and linked variables). A message queue is used to queue up parameter changes, the 
details, which are not trivial, can be found in the AAX ported project code. !

Figure 4: Audio/GUI processing in AAX!!
! !

set of Parameter 
Objects

processAudio(paramList)

paramList of dirty 
parameters

Update dirty variables

userInterfaceChange()

(1)

(2)

process audio buffers

Audio Process Loop

AAX_CEffectPrameters
Object (PlugIn)

write out meter values 
to parameters

(3)

(4)

(5)

idle() redraw meters 
bound to parameters

COPY the param/value 
pair to a dirty 

parameter list and 
update current state 

index

staticRenderAudio( stateIndex) 

transfer dirty params 
for current state into a  

parameter list

call processAudio() 
and pass the current 

parameter list for 
updates

(6)



RAFX Technical Note 1! Audio/GUI Processing in RackAFX and other APIs !
Copyright © 2016 Will Pirkle 

!
(1) Starting at the top of Figure 4, when the user moves a GUI control, the parameter object is updated.  !!
(2) A copy of the updated parameter is added to a dirty parameter list. A mutex lock is involved during this 
operation but that is outside the scope of this document. !!
(3) Using the monolithic object approach, the audio processing is broken into two phases (and functions). 
During the first phase, the dirty parameter copies are transferred to a parameter list which is passed as 
an argument to the second-phase function.!!
(4) During the second phase, you alter your plugin’s underlying variables according to the parameter list, 
calling userInterfaceChange() accordingly. Then, you process the audio as usual. There is also an opera-
tion to clear out the dirty parameter list after audio has been processed, which you must supply. !!
(5) The GUI meter variables are written into the set of parameters.!!
(6) Lastly, the meter values are updated during the idle() loop of the GUI thread.!!
AAX NOTE: the AAX API is a confidential and private API, however I have permission from Avid to im-
plement the Make AAX function in RackAFX and generate projects that use this paradigm. The above 
information about the flow of control can be gleaned from the resulting AAX projects, even if you do not 
own the AAX SDK. !!
Final Remarks!
As you can see from the above figures and explanations, all the APIs share a similar basic pattern of op-
eration: the GUI reads and writes variable from and to some sort of intermediate container of parameters. 
The altered (dirty) parameter changes are ultimately applied on the plugin during the audio processing 
phase prior to signal processing, but are kept separate from the actual parameters by the use of copied 
arrays, copied event lists, copied parameter lists, or in the case of AU by atomic data accesses. Out-
bound parameter changes (meters) are then queued up at the end of the processing cycle and are ulti-
mately applied in a thread safe manner to the GUI.

! !


