
Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

!
Creating VSTGUI Custom Views 5: Subclassing CView for View Objects!
Will Pirkle!!
In this module, we will subclass CView, the mother of all view objects and create a waveform graph that
shows the audio waveform scrolling from left to right as audio streams. In the process we will learn about
the primitive drawing functions that you can use in your CViews - these are the same types of functions I
use in the RackAFX analyzer to plot waveforms, FFTs, etc… So you can add this kind of feature to your
product with some effort. The project that accompanies this module is called CustomViewsFour.!!!

The custom CView object is at the bottom and dis-
plays the audio waveform. !!!!!!!!!!!!!!!!!!!!!!!!!

The Wave View object!
In the last module, you saw the member attributes and methods for CView. For our scrolling waveform
view we only need to override the draw() function. But of course there are many details about the drawing
we need to handle including learning some primitive drawing functions. Examine the waveform view
above and observe that:!!
• it has a thin black outline!
• it has a grey color for the background!
• the audio waveform is in blue and exactly fits in the control!!
The audio waveform itself may look like some kind of very complex polygon that we have filled with blue
color, but in actuality it is made up of only vertical lines. The places where the vertical lines touch each
other looks like a filled polygon. Obviously, the height of these vertical lines is based on the audio output
level. In our draw() function, creating the black outline and grey color fill are simple. The audio waveform
is where the details lie. !

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

As with the previous modules, if you are attempting this advance GUI stuff then I am assuming you can
debug C++ code and you are not afraid to do some work to get the results you want. So, I am not going to
discuss every line of code - you need to figure out some stuff on your own to really understand and digest
it. !!
The fundamental way this audio waveform view works is that it includes a circular buffer. The circular buf-
fer holds the audio data amplitude information that the waveform view paints into the device context. !!!!!!!!!!!!!!!!!!!!!!
Here is the audio waveform view with the circular buffer below it and laying on its side. The trick to making
this work is that the circular buffer has the exact same number of cells (memory locations) as the CView
is wide, in pixels. When we plot the data, we will move one pixel at a time, drawing a line that represents
the overall audio amplitude variable. Thus each cell in the buffer corresponds to one audio sample ampli-
tude and that produces one line segment in the graph. !

The scrolling effect is done by responding to the VSTGUI_TIMER_PING message in your showGUI()
method. In this code we will grab the next audio data point and stuff it into the circular buffer (overwriting
the oldest value), then we will invalidate the wave view to force it to repaint itself. This succession of inval-
idation/repaints is what animates the control. In the paint code, we can move forwards or backwards
through the circular buffer to make the waveform appear to scroll in either direction, though right-to-left is
what you see in most DAWs, so we will use that. !!
The wave view object is packaged in:!!
WaveFormView.h! - the interface file!
WaveFormView.cpp! - the implementation file!!

! !

Circular Data Buffer
has same number of cells
as pixels in the graph = M

width = M pixels

Each cell in the circular buffer contains the absolute value of an audio sample. Thus non-dis-
torted values will be on the range of [0.0, 1.0] — anything above 1.0 is clipped off the graph.

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

Since the CView constructor requires a CRect object to define it, we will use the same kind of constructor
and simply call the base class. We also need to override the draw() method. Finally, we need the circular
buffer and its indexing variables (this is all covered in my FX book and in numerous sample projects). !!!
CWaveFormView!
Have a look at the class definition for CWaveFormView:!!
#pragma once
#include "../vstgui4/vstgui/vstgui.h" !
namespace VSTGUI { !
class CWaveFormView : public CView
{
public:
 // constructor
 CWaveFormView(const CRect& size); !
 // our only override
 virtual void draw(CDrawContext *pContext); !
 // stuff for circular buffer
 float* m_pCircBuffer;
 int m_nWriteIndex;
 int m_nReadIndex;
 int m_nLength; !
 // methods to work on buffer
 void addWaveDataPoint(float fSample);
 void clearBuffer();
}; !
} !
Notice the two methods at the bottom of the definition - one of them adds a new data point to the circular
buffer - it will be called each time we respond to the VSTGUI_TIMER_PING message. The clearBuffer()
below simply empties the data. !!
Now lets step through the methods in the implementation (.cpp) file.!!
Constructor:!
In the constructor we need to:!!
• dynamically create our new circular buffer based on the width of the CView in pixels !
• initialize the circular buffer’s index and length variables!
• clear out the circular buffer!!
Notice the items in bold.!!
CWaveFormView::CWaveFormView(const VSTGUI::CRect& size)
: CView(size)
{
 m_pCircBuffer = NULL;
 m_pCircBuffer = new float[(int)size.width()];
 m_nWriteIndex = 0;

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

 m_nReadIndex = 0;
 m_nLength = size.width();
 m_nLength -= 1;
 memset(m_pCircBuffer, 0, m_nLength*sizeof(float));
} !!
addWaveDataPoint():!
In this function we need to put a new value into the circular buffer and increment our write index variable,
wrapping it around the buffer if needed. Again the good stuff is in bold.!!
void CWaveFormView::addWaveDataPoint(float fSample)
{
 if(!m_pCircBuffer) return; !
 m_pCircBuffer[m_nWriteIndex] = fSample;

 m_nWriteIndex++;

 if(m_nWriteIndex > m_nLength - 1)
 m_nWriteIndex = 0;
} !!
clearBuffer():!
In this function we just memset the buffer to 0 and reset the index values. !!
void CWaveFormView::clearBuffer()
{
 if(!m_pCircBuffer) return; !
 memset(m_pCircBuffer, 0, sizeof(float));
 m_nWriteIndex = 0;
 m_nReadIndex = 0;
} !!
Primitive Drawing Functions!
Before we look at the draw() method, lets discuss primitive drawing functions. The term “primitive” here is
misleading - though these functions are all simple and basic, they can be combined to produce very nice
graphic plots, especially since VSTGUI includes anti-aliasing code to make lines and curves look smooth.
Remember that the entire Analyzer object in RackAFX is drawn with only the same primitive methods
(they are just the Microsoft versions). With a little work, you will get used to these methods and with a little
ingenuity, you can create killer graphics or even animations. The basic types of primitive drawing items
are:!!
• lines!
• arcs!
• rectangles!
• polygons!
• ellipses (including circles)!
• points!
• text!
• bitmaps (pre-drawn graphic components)!!
! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

In our wave view, we are only going to need rectangles and lines to accomplish everything we need. !!!
GUI Coordinate System!
As we discussed in module 3, the GUI coordinate system is flipped for the y-dimension. The upper left
corner of the view is the origin at (0,0) and moving to the right increases x positively, while moving down
increases y-positively. You need to keep this in mind when dealing with GUI drawing code. !!
NOTE: if you already have your hands on some code to manipulate lines, circles, planes, etc… geometri-
cally, then you only need to do a bit of work to get them to work in this upside down world - invert the y
components and make sure everything is in quadrant IV of your system.!!!!!!!!!!!!!!!!!!!!!!
The draw function accepts a single argument, the CDrawContext* which renders the graphic into memory
using whatever platform-dependent primitive drawing functions are needed. !!
void CWaveFormView::draw(CDrawContext* pContext) !
Look at the class declaration for CDrawContext and you can see the drawing functions. Here is an abbre-
viated list of methods:!!
Method Description

drawLine() draw a line one CPoint to another CPoint

drawLines() draw a series of line segments using an array of CPoint objects that set the start
and end points

drawRect() draw a rectangle using an array of CPoint objects that set the rectangle corners

drawPolygon() draw a polygon using an array of CPoint objects that set the polygon vertices

setLineWidth() set the width of the lines in pixels

setFillColor() set the color for filling rectangles, polygons, ellipses or any filled shape

Method

! !

origin = (0, 0) positive X direction

positive Y direction

(10, 8) (20, 8)

(20, 20)

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

!!!
The draw() function components!
We are going to code the draw() function to implement the following flow of logic. !!
First setup the background stuff - this is the static stuff behind the main graphic we will draw!!
• if there is a background image, draw it (we do not have one, but you can easily add your own)!
• set the line width to 1 pixel!
• set the fill color to light-grey (200, 200, 200, 255) in (r, g, b, a)!
• set the frame (line) color to black!
• call drawRect() to draw the rectangle according to our size variable and fill it with the grey color; this

automatically produces both the thin black frame-line and the grey fill!!
Next, we need to step through the circular buffer and use the moveTo() and lineTo() functions to move
and draw lines. We will make another call to change the frame (line) color to blue before drawing the
lines. The logic I chose is simple, though you could also do the same thing with slightly different code. !!
• step through the circular buffer starting at the first cell and moving backwards through the buffer, which

will cause the waveform to move from left to right; an index value keeps track of which pixel column this
corresponds to in the CView!

• move to the center of the CView in the y-dimension!
• draw a line DOWN to the circular buffer’s audio sample -value/2!
• move back to the center in the y-dimension!
• draw a line UP to the circular buffer’s audio sample value/2!!
You can see that instead of drawing a single vertical line segment for each cell, I am drawing two lines,
one going up and one going down. There are two reasons I am choosing this logic:!!
1. the wave form will always be centered in the y-dimension!
2. when using semi-transparent colors (as we do here) the second line segment that is drawn will share

a common pixel (the center value) with the first line segment, forming a darker line that resembles an
x-axis laying under the graph!!

OK, here is the complete drawing code. You might want to step through this code a few times to watch
how the drawing occurs. I am leaving this in the normal document font to make the long lines fit. The
drawing code is in bold.!!!
void CWaveFormView::draw(CDrawContext* pContext)!
{!
! // --- bitmap, if one!
! if(getDrawBackground())!
! {!
! ! getDrawBackground()->draw(pContext, size);!

setFrameColor() set the color the lines (aka stroke color)

setFontColor() set the color of the font

drawString() draw text string

DescriptionMethod

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

! }!
! else!
! {! ! !
! ! // --- setup the background rectangle!
! ! pContext->setLineWidth(1);!
! ! pContext->setFillColor(CColor(200, 200, 200, 255)); // light grey!
! ! pContext->setFrameColor(CColor(0, 0, 0, 255)); // black!
! ! !
! ! // --- draw the rect filled (with grey) and stroked (line around rectangle)!
! ! pContext->drawRect(size, kDrawFilledAndStroked);!!
! ! // --- this will be the line color when drawing lines!
! ! // alpha value is 200, so color is semi-transparent!
! ! pContext->setFrameColor(CColor(0, 0, 255, 200)); !!
! ! if(!m_pCircBuffer) return;!
! ! !
! ! // --- step through buffer!
! ! int index = m_nWriteIndex - 1;!
! ! for(int i=1; i<m_nLength; i++)!
! ! {!
! ! ! float sample = m_pCircBuffer[index--];!
! ! ! float normalized = sample*size.height();!
! ! ! if(normalized > size.height() - 2)!
! ! ! ! normalized = size.height();!!
! ! ! // --- halves!
! ! ! normalized /= 2.0;!!
! ! ! // --- find the three points of interest!
! ! ! const CPoint p1(size.left + i, size.bottom - size.height()/2.0);!
! ! ! const CPoint p2(size.left + i, size.bottom - size.height()/2.0 - normalized);!
! ! ! const CPoint p3(size.left + i, size.bottom - size.height()/2.0 + normalized);!!
! ! ! // --- draw lines!
! ! ! pContext->drawLine(p1, p2);! // line from center to p2!
! ! ! pContext->drawLine(p1, p3);! // line from center to p3!!
! ! ! // --- wrap the index value if needed!
! ! ! if(index < 0)!
! ! ! ! index = m_nLength - 1;!
! ! }!
! }!
! setDirty (false);!
}!!
With the waveform view code complete, we only need to hook it into the plugin. This waveform object will
need to persist from one showGUI() call to the next so we need to make it a member variable. In addition,
we will need a variable that contains the absolute value of the current audio output sample at any time.
The VSTGUI timer will fire every 50 milliseconds so we will use the passing value of the output at that
time for the plot. The sample code uses the left channel as the data source. The timer will NOT fire when
there is no GUI.!!
! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

Here is where to set
the Custom View
name in the GUI
Designer — it is
named WPWave-
View:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

CustomViewsFour.h !
In the plugin interface file, we need to #include the new waveform object (it is already added to the Visual
Studio project) and create its variables for the waveform view and current audio output level:!!
#include "plugin.h"
#include "GUIViewAttributes.h"
#include "WaveFormView.h"
#include “../vstgui4/vstgui/vstgui.h" // for CView definition !
class CCustomViews : public CPlugIn
{
public:

 <SNIP SNIP SNIP> !
 // Add your code here: --- //
 //

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

 // --- our helper
 CVSTGUIHelper m_GUIHelper;

 // --- custom waveform view
 CWaveFormView* m_pWaveFormView;

 // --- current output sample value
 float m_fCurrentOutput; !
 // END OF USER CODE -- // !!
CustomViewsFour.cpp !
Step through the required functions:!!
Constructor:!
• clear the m_pWaveForm pointer!
• clear the m_fCurrentOutput to 0.0!!
CCustomViewsFour::CCustomViewsFour()!
{!
! // Added by RackAFX - DO NOT REMOVE!
! //!
! // initUI() for GUI controls: this must be called before initializing/using any GUI variables!
! initUI();!
! // END initUI()!!
! <SNIP SNIP SNIP>!!
! // Finish initializations here!
! m_pWaveFormView = NULL;!
! m_fCurrentOutput = 0.0;!
}!!!
prepareForPlay():!
• clear the m_fCurrentOutput to 0.0!!
bool __stdcall CCustomViewsFour::prepareForPlay()
{
 // Add your code here:
 m_fCurrentOutput = 0.0; !
 return true;
} !
processAudioFrame():!
• save the current left output value after all processing has been done!!
bool __stdcall CCustomViewsFour::processAudioFrame(float* pInputBuffer,
 float* pOutputBuffer,
 UINT uNumInputChannels,
 UINT uNumOutputChannels)
{
 // --- volume

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

 float fVolLeft = pow(10.0, m_fVolumeLeft_dB/20.0);
 float fVolRight = pow(10.0, m_fVolumeRight_dB/20.0); !
 <SNIP SNIP SNIP> !
 // --- do it
 pOutputBuffer[0] = pInputBuffer[0]*fVolLeft;
 m_fMeterValueL = fabs(pOutputBuffer[0]); !
 // Mono-In, Stereo-Out (AUX Effect)
 if(uNumInputChannels == 1 && uNumOutputChannels == 2)
 pOutputBuffer[1] = pInputBuffer[0]*fVolLeft; !
 // Stereo-In, Stereo-Out (INSERT Effect)
 if(uNumInputChannels == 2 && uNumOutputChannels == 2)
 {
 pOutputBuffer[1] = pInputBuffer[1]*fVolRight;
 m_fMeterValueR = fabs(pOutputBuffer[1]);
 } !
 // save left output for wave view
 m_fCurrentOutput = fabs(pOutputBuffer[0]); !
 return true;
} !!
showGUI():!
Decode the incoming message. !!
For the Custom View message we need to instantiate our object:!!
// --- module 4 ONLY!! This is our scrolling wave view
if(info->customViewName.compare("WPWaveView") == 0)
{
 // --- get the needed attributes with the helper
 const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(
 info->customViewRect); !
 // --- create it!
 m_pWaveFormView = new CWaveFormView(rect); !
 // --- return control cloaked as a void*
 return (void*)m_pWaveFormView;
} !
For the GUI Timer Ping message we need to add the current output amplitude to the circular buffer and
then call the invalid() function to force the control to repaint. !!
case GUI_TIMER_PING:
{
 if(m_pWaveFormView)
 {
 m_pWaveFormView->addWaveDataPoint(m_fCurrentOutput);
 m_pWaveFormView->invalid();
 }
 return NULL;

! !

Advanced GUI Design: Module 6! VSTGUI Custom Views 5!
Copyright © 2015 Will Pirkle

} !
Finally, for the GUI_WILL_CLOSE method, don’t forget to NULL out the pointer so we don’t use it acci-
dentally:!!
case GUI_WILL_CLOSE:
{
 if(m_pWaveFormView)
 m_pWaveFormView = NULL; !
 return NULL;
} !!
That’s it! Compile the code and watch the audio scroll across the CView. !!
Object Destruction?!
One final comment - you may notice that there is no code here to delete the CWaveFormView object
when the GUI is closed. And, in the last module, there was no code to delete all the custom view objects
we created. The reason is that VSTGUI4 uses reference counting to delete our objects when they are no
longer needed. !!
Lastly, you also do not have to worry about the VST Timer Ping - it will only occur after the GUI has been
created (or re-created after destruction). But we still check the validity of the pointer before using it.!!
In the next module, we will design a pure-custom GUI programmatically and without the RackAFX GUI
Designer. !!!!
References:!!
VSTGUI4 Files and Documentation: http://sourceforge.net/projects/vstgui/

! !

http://sourceforge.net/projects/vstgui/

